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LETTER TO THE EDITOR 

Dynamics of phase separation in the presence of surfactants 

Mohamed Laradji, Hong Guo, Martin Grant and Martin J Zuckermann 
Centre for the Physics of Materials, Physics Deparlment, Rutherford Building, McGill 
University, 3600 rue University, Montr&al, QuCbec, Canada H3A ZT8 

Received 1 January 1991, in final form 9 April 1991 

Abstract. The dynamics of phase separation in two-dimensional binary systems containing 
surfactants is investigated by means of a time-dependent Ginzburg-Landau model. We 
study the Langevin dynamics of two scalar fields representing the local order parameter 
and the local surfactant concentration. In the intermediate time regime, domain growth is 
characterized by anomalously slow dynamics. Dynamic scaling of the pair-correlation 
function and structure factor are observed. 

In colloidal dispersions, surfactants are adsorbed on the interfaces separating the 
dispersed phase from the dispersion medium. These systems exhibit a large area-to- 
volume ratio, given a relatively small amount of surfactant [l]. The common physical 
systems where these features are present include liquid and solid aerosols, foams, sols, 
pastes, suspensions, emulsions and micoremulsions. For example, microemulsions are 
ternary mixtures of, say, water, oil and surfactants, where the surfactant makes the 
mixture homogeneous [2,3]. The emulsion can therefore be thought of in terms of 
microphase separation, where small domains of water and oil exhibiting short-range 
order are separated by thin layers of surfactants. In contrast, on large length scales 
they are similar to disordered fluids, being isotropic, transparent and homogenous. 
These features are common to other colloidal suspensions. 

We present the first study of the dynamics of microphase separation due to 
surfactants in a bicontinuous system using a simple coarse-grained model. Our model 
combines the physics of bulk phase separation with the fact that surfactants reduce 
the interfacial tension between domains of different phases. We concentrate on the 
transient dynamics of the growth of the microdomains, following a quench from high 
to low tempxature, and the scaling properties of the dynamics in two dimensions. 
This cculd correspond experimentally to a thin layer of fluid constrained between two 
plates. I t  is worth noting that extensive experimental and theoretical studies have been 
performed on these systems. However, very little is known about the dynamics of 
formation of micellar and bicontinuous microemulsions or other colloidal systems 
starting from a completely disordered state. In particular we examine the effects of 
conservation laws on the dynamics, the morphology of the microdomains and the 
effects of surfactant concentration. 

The growth of order during a first-order phase transition, such as for a binary alloy 
or fluid, has been examined by many authors [4]. There one studies the dynamics of 
a system which has been prepared by quenching from a high temperature, where the 
system is disordered, to a low temperature where the system is ordered in equilibrium. 
Usually the average domain size of one phase, R ( t ) ,  grows to macroscopic size 
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according to a power law, R (  1 )  - I". The growth is to minimize surface energy following 
a quench, where the driving force is proportional to the product of surface tension 
and local curvature. In the present study, we examine domain growth when the surface 
tension becomes vanishingly small due to the presence of surfactants and the domains 
remain on small length scales [5]. We further investigate possible analogies between 
the effects of surfactants and those of quenched impurities. Quenched impurities can 
pin interfaces, thus limiting the growth to logarithmically slow activated processes [ 6 ] ,  
and indeed the surface tension itself can vanish in, for example, the two-dimensional 
random-field Ising model. We find the dynamics of domain growth for the system with 
surfactants to be similar to that seen in systems with quenched impurities. 

We have constructed the most simple Landau-Ginzburg free-energy functional 
which incorporates the above considerations. The free energy is a functional of two 
local fields dependent on field point x: $(x) and p(x), where $ is the local order 
parameter corresponding to the difference in the local densities of, say, water and oil, 
and p represents the local concentration of surfactants. Our model is based on the 
coupled-variable model of Hohenberg, Halperin and Ma, introduced to study critical 
dynamics [7]. Their free energy functional is [ 8 ]  

S[#, p] = I d x [ ~ ( V # ) ~  - qb2+ ~ @ ~ + g p * $ ' +  up2 - f i n ]  ( 1 )  

where c, r, U, g, U and p are  positive constants for temperatures below the critical 
temperature T,. This is in the equilibrium universality class of the king model, which 
can be easily found on integrating away the variable p. The double-well structure below 
T, ensures phase separation to the two bulk phases given by J, = il, for example. The 
novelty of the mode-coupling contribution of the p variable arises from the time t 

dependence. The equations of  motion are 

' and 

S S  
J t  SP 
--- "- M -+ ~~ (1 ,  I )  (3) 

where for either variable the average noise satisfies 

( ~ ( x ,  t ) q ( x ' ,  f)} = ZTM~(X - x')S( t - 1 ' )  (4) 
> ~ 3 -  . ~ ~...~ ~. ,~ - -  L ~ ~ ~ ~.. .^ :. .. c -,,-... :-- ,,-#--..La.- -. ^ I  ""-":A,.- anu aoirzmilnn s cunsianr nas oeen sei tu urury. rurruwrrrg nuircriusrg CL ut, w c  LVII>IYFL 

models A, B, C and I), which are defined by the presence or absence of conservation 
laws: the kinetic coefficients Mu. and M y  are constants (implying no conservation laws) 
except in model B where M* a -V2 (implying a conservation law); in model C where 
M, cx - V2; and model D where both M* ot - V2 and M,  a - V2. 

To this we add the most simple term which preferentially forces a concentration 
of p to the interface between different values of *: 

Fsucractant= --s dxP(V$)' ( 5 )  

where s is a constant. We expect that many colloidal dispersions are described by 
more complicated modifications to the free energy [9-131, but here we wish to show 
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the dramatic effects of only a simple change. Indeed, this term causes the surface 
tension between two bulk phases of JI to vanish, if there is a non-zero average 
concentration of surfactant, pu, thus forbidding phase separation. Thus the dynamics 
of this system and its short-range order are different in important respects from a 
simple disordered system. 

The Langevin equations were solved numerically using Euler's method on a two- 
dimensional grid of linear size L =  128 with a finite difference scheme. Periodic 
boundary conditions were used throughout. The spatial mesh size was taken to be 
Ax = 0.7, and the time mesh size is chosen as AI  = 0.02. Further reduction of the mesh 
sizes gave essentially the same results. Large numbers of runs were needed to obtain 
reasonable statistics and we therefore performed over 50 independent runs for each 
system considered. The equations were iterated over a time corresponding to 100 000 
iterations. Typical parameters used in the simulations were c = $ ,  r = f ,  U = $ ,  g=;, 
a =; and s =a .  Our results were not sensitive to these particular values. The chemical 
potential p drops out from the Langevin equations in models C and D; its effect is 
determined by initial values of the surfactant concentration po. p is an input parameter 
for the other two models. The mobilities M$ and M, were set to f in the non-conserved 
case (the proportionality constants were set to this value in the conserved case). We 
furthermore set vY. and vn to zero, since we do not expect the inclusion of a finite 
noise to change the dynamics significantly, as shown in the studies of spinodal 
decomposition 1141. We used random initial conditions for the simulation, i.e. to each 
grid point, @(x) and p ( x )  were assigned small random values around their initial 
average values at 1=0, see below. We calculated the structure factor, which is the 
Fourier transform of the real space pair-correlation function 

The wavenumber k is defined as follows: 

(7) 
2 

Ax 
k2 =? [ 2 - ~ o ~ ( k , A x )  -cos(~,Ax)] 

where kx = (27r/L)m, k, = (27r/L)n, in units Ax, and m, n = 0, 1,2,. . . , L. Thisdefinition 
of the wavenumber arises from the Fourier transform of the discrete Laplacian in two 
dimensions. We present results for the circularly averaged structure factor S ( k ,  1 )  = 
X ' S ( k ,  t ) / Z  1,whereE'denotesasumoveracircularshelldefinedby n - f s k l / ( 2 7 r ) s  
n i t .  The average domain size is monitored as a function of time from the second 
moment of the circularly averaged structure factor: 

We present results mainly for model D, since this corresponds to the common 
experimental situation for colloidal dispersions; we shall simply mention the differences 
we have found between these results and models A, B and C, and present a more 
detailed comparison in a future paper. In model D, the surfactant concentration is 
conveniently fixed to its initial value, po. Figure 1 shows the spatial configurations of 
the system after 100000 iterations, for po=O.l, 0.15, 0.17, 0.2. The left column of 
snapshots illustrates the ordering field $(XI, the right column displays the surfactant 
field p ( x ) .  It is clear that the surfactants accumulate at the interfaces, as expected. We 
also observe that the domain sizes decrease considerably as po is increased. 
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Figure 1. Final configurations (after 100 000 iterations) for the values of po= 0.1.0.15,0.17 
and 0.2, from top to bottom. The left column of snapshots shows the spatial distribution 
of the $ field, in which black regions correspond to positive $ and white regions to negative 
$.The right column shows the spatial distribution of the p field. White regions correspond 
to small values of p (smaller than 0.04) and black regions correspond to positive values 
(about 1). 

The process of microphase separation was found to he exceedingly slow, in contrast 
to the more familiar case of the phase separation in a first-order transition, where one 
often finds power law growth in the domain size. Figure 2 shows R ( r )  as a function 

logarithmic in time, and often becomes even slower for very late times. We have not 
attempted to estimate an exponent 4 in R - (In f)". It. is worth noting that the final 
domain size decreases as po increases, in agreement with the configurations shown in 
figure 1. No power-law growth was observed for any of the surfactant concentrations 
considered in this study. The reason of such a slow growth is due io the accumulation 
of surfactants at the interfaces which reduces the interfacial tension. This results in a 
dramatic decrease of the driving force for the growth which is proportional to the 

of In ; foi &eeisEi va:ues of .se that, for G,;, the appears 
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Figure 2. Time evolution of the domain size far the different values of po. The domain 
sizes are plotted against In I curves from top to bottom correspond to po=O. l .  0.15, 0.17 
and 0.2. 

product of interfacial tension and the local curvature. In some sense, the surfactants 
play the role of the quenched impurities in a random system which are known to pin 
the domain walls leading to slow dynamics [6]. However, note that the surfactants are 
annealed and fluctuate in time: it is the fact that they accumulate at interfaces, stopping 
phase separation, which leads to the anomalously slow domain growth here. We 
observed similarly slow dynamics in models A, B and C. 

The structure factor shows a peak at a non-zero wavenumber k for either JI or p 
in model D. This peak moves to smaller values of k as time increases indicating 
coarsening. At very late times the system no longer coarsens and the peak stays at a 
fixed value of k = k,, which corresponds to the inverse of the equilibrium domain size. 
Our calculation shows that k,  increases its value as po increases, consistent with the 
behaviour of the domain size mentioned above. This behaviour is due to the conserva- 
tion law; from the study of models A, B and C, we have found that if a field is 
non-conserved, the structure factor only peaks at k = 0. 

Systems undergoing phase separation often exhibit self-similar behaviour which is 
reflected in the dynamic scaling of the structure factor [4]. This occurs when the average 
domain size becomes the only relevant length scale. Although the domain size saturates 
at late times in our case, implying that the width of the interface can play a role as a 
second length scale, this width is still much smaller than the domain size. It is  therefore 
natural to make the usual scaling ansatz [4] S(k ,  t ) =  R ( ~ ) “ F ( K )  where K = kR(r), and 
d = 2 is the dimension of the system. The function F(K) is shown in figure 3 for 
po = 0.15 and good scaling is observed. Similar results were obtained for other non-zero 
values of po. We have also made a direct calculation of the real space two-point 
correlation function for the IJ field and observed the same dynamic scaling. 

While non-zero po leads to the slow dynamics mentioned above, we obtain the 
usual t”’ growth law for po=O.  A crossover between the two distinct dynamic 
behaviours is therefore expected. We also expect the equilibrium domain size to be 
proportional to l / p o  for non-zero po since the surfactants mostly accumulate at the 
interfaces. This implies that the total length of the interface is proportional to po. These 
considerations suggest the following crossover form 

R( t ) t -” ’  = / ( p i t ) .  (9) 

The function f ( r )  is equal to a constant for T = 0 and is proportional to r-”’ for large 
r. Our data for po ranging from 0.15 to 0.20 are consistent with this form, as shown 
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Figure 3. Dynamic scaling of model D in the intermediate to late times for po = 0.15. Data 
for I = 400 to I = 2000 and wavevector values from k = 0 to k = ii are collapsed on to a 
single curve. 

in figure 4. However, a detailed confirmation of this crossover form requires data for 
smaller values of po, and longer time regimes, than we have studied so far. 

In conclusion, a Ginzburg-Landau model based on two local fields for a ternary 
mixture of two phase separating variables and surfactants was introduced to study the 
dynamics of microphase separation. The domain growth was studied by monitoring 
the correlation function and the structure factor. We observe a slow growth in the 
domain structures characterized by a logarithmic time dependence. This can be 
attributed to the accumulation of the surfactants at the interfaces after their migration 
from the bulk, which drastically reduces interfacial tension leading to the diminishing 
of the driving force. The microdomain size decreases with increasing surfactant con- 
centration. A dynamical scaling is observed in the pair correlation function and structure 
factor of the system. Although finite, the microdomain size always remains much larger 
than the width of the interface and plays the role of a dominant length sca!e. Finally, 
we do not expect the results to be qualitatively different in three dimensions. That is, 

Figure 4. Crossover scaling function for the average domain size of model D for different 
po. The straight line has a slope of -!. 
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we expect approximate scaling and anomalously slow growth to be general features 
of the dynamics. This is in the process of being tested. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada, and les Fonds pour la Formation des Chercheurs et 1'Aide B la Recherche 
de la Province du Quibec. 
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